

MATHÉMATIQUES AP : Equations

Les différentes équations.

1. Equation du premier degré.

Une équation du premier degré est une équation qui peut s'écrire sous la forme

$$ax + b = cx + d$$

2. Equation produit nul.

Comme son nom l'indique, il s'agit d'une équation dont le premier membre est un produit et le second membre est nul.

$$\underbrace{(ax+b)(cx+d)}_{\text{Produit de 2 facteurs}} = \underbrace{0}_{\text{Nul}}$$

Pour résoudre de telles équations, on utilise la règle suivante :

Un produit de facteurs est nul si et seulement si l'un au moins de ses facteurs est nul.

3. Equation « carré isolé » : $x^2 = a$.

C'est une équation dans laquelle le carré est isolé (le membre de droite ne comporte pas de x).

Cette équation a :

- Aucune solution si a < 0.
- Une solution si a = 0 : 0.
- Deux solutions si a > 0 : \sqrt{a} et $-\sqrt{a}$.

Exercice 1

Cocher la réponse correcte.

1. 0 est solution de l'équation :

a)
$$\Box$$
 $(3x+4)(x-5) = 0$ **b)** \Box $2x(2x+1) = 0$ **c)** \Box $3x = 3$

b)
$$\Box 2x(2x+1) = 0$$

c)
$$\square 3x = 3$$

2. -1 est solution de l'équation :

a)
$$\Box 4x + 1 = 3(2x + 2)$$

b)
$$\Box x^2 = -1$$

a)
$$\Box 4x + 1 = 3(2x + 2)$$
 b) $\Box x^2 = -1$ **c**) $\Box (3x + 3)(x - 5) = 0$.

3. Une solution de l'équation $x^2 = 4$ est :

$$\mathbf{c})\Box -2$$

4. L'équation $\frac{3}{x} = 1$ a pour solution :

$$\mathbf{a}) \square \frac{1}{3}$$
 $\mathbf{b}) \square 3$

5. L'équation $\frac{2}{3}x = 0$ a pour solution :

a)
$$\Box \frac{3}{2}$$
 b) $\Box \frac{2}{3}$ c) $\Box 0$

Exercice 2

Questions	Réponses
	□ V
1. L'équation $3x + 1 = 2(x + 6)$ a pour solution 11.	\Box F
	□ V
2. L'équation $-x - 4 = 4$ a pour solution 0.	\Box F
	\Box V
3. L'équation $\frac{x}{3}(x+1) = 0$ a deux solutions.	\Box F
2	\Box V
4. L'équation $x^2 = a$ a toujours deux solutions.	\Box F
	\Box V
5. L'équation $1 - x^2 = 0$ n'a pas de solution.	\Box F
6. $2(3x+5)+6(4x+3)=0$ est une équation	\Box V
produit nul.	\Box F
	\Box V
7. Si $\frac{x}{3} + 1 = 0$, alors $x = \frac{1}{3}$.	\Box F
	□ V
8. 3 est une solution de l'équation $x^2 - 4x + 3 = 0$.	\Box F

Exercice 3

Pour chacune des équations suivantes, indiquez sa nature (premier degré, produit nul, carré isolé), puis la résoudre.

a.
$$4x - 8 = 2x - 7$$

d.
$$2(6x-5) + 4x - 2 = 0$$
 g. $5(x+3) = 2(x-7)$

g.
$$5(x+3) = 2(x-7)$$

b.
$$(2x-4)(4-x)=0$$

$$e.3(x+6) = 2x - 8$$

b.
$$(2x-4)(4-x)=0$$
 e. $3(x+6)=2x-8$ **h.** $\frac{x+4}{5}=2x+1$

c.
$$x^2 = 9$$

f.
$$3x^2 + 7 = 0$$

i.
$$3x^2 + 7 = 0$$

......

• • • • • • • • • • • • • • • • • • • •	 	

_	•	4
HXP	rcice	4

Soit A = (4x + 1)(x - 2) + (x - 2)(3x - 5).

1. Factoriser A en utilisant un facteur commun.

2	$\mathbf{E}\mathbf{n}$	déduire	169	solutions	de	l'éa	nation	4	— (n
4.	$_{\rm LH}$	dedune	ies	SOLUTIONS	uе	ı ea	uation	A	=	U.

	• • • • • • • • • • • • • • • • • • • •	
••••	 	

• • • • • • • • • • • • • • • • • • • •	 •	

......

Exercice 5

Soit $B = (x+5)^2 - 4$.

- 1. Le nombre x = -1 est-il solution de l'équation B = 0?
- **2.** Factoriser B en utilisant l'égalité remarquable : $a^2 b^2 = (a + b)(a b)$.

3.	Résoudre	$l\'e quation$	B =	0.
----	----------	----------------	-----	----

٠.																																												
٠.																																												
٠.																																												
٠.																																												
٠.																																												
٠.																																												
٠.																																												
	•	 ٠.	•		•		 	 	•						•					 •	٠.		 •		•			٠.	٠.	•	٠.	•	٠.			 •					•	٠.	•	