Parcours d'exercices

Fonctions généralités

(Lectures graphiques)

1

FONCTIONS

Parcours 1

Parcours 2

Parcours 3

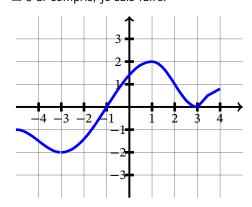
1 Pour s'échauffer

Jour 1 : .../10

Jour 2: .../10

Jour 3: .../10

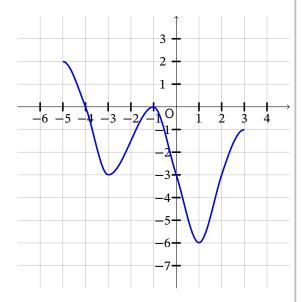
2 Pour s'entraîner


Exercice 1

Ci-dessous, on a tracé la courbe représentative de la fonction f.

- 1) Quelle est l'image de -3?
- 2) Quelle est l'image de 2?

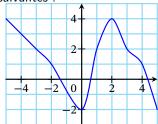
- 3) Déterminer le (ou les) antécédent(s) de 2.
- 4) Déterminer le (ou les) antécédent(s) de 0.
- ☐ J'ai compris, je sais faire.



MathALÉA

Exercice 2

Voici la représentation graphique \mathcal{C}_f d'une fonction f définie sur $[-5\,;\,3].$

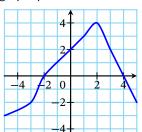

Répondre aux questions en utilisant le graphique.

- 1) Quel est le nombre de solutions de l'équation f(x) = 2?
- 2) Résoudre l'équation f(x) = 3.
- 3) Déterminer une valeur de k telle que f(x) = k admette exactement 3 solutions.
- ☐ J'ai compris, je sais faire.

MathALÉA

Exercice 3

Voici la courbe représentative d'une fonction g définie sur [-5;5]. Résoudre graphiquement les équations suivantes :

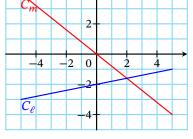


- 1) g(x) = 2
- 2) g(x) = -3
- 3) g(x) = 4
- 4) g(x) = -2

Exercice 4

Voici la courbe représentative d'une fonction h définie sur [-5;5]. Résoudre graphiquement :

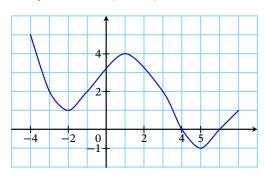
- 1) $h(x) \ge 0$
- 2) h(x) < -4
- 3) h(x) < -2
- 4) h(x) > 2
- 5) h(x) < 2
- 6) $h(x) \le 2$



Sésamath

Exercice 5

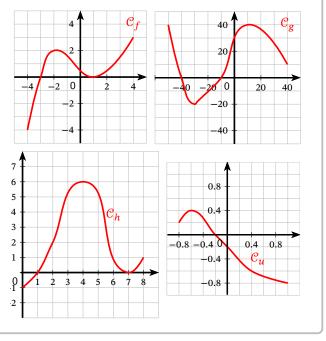
Voici les courbes représentatives sur [-5; 5] de deux fonctions ℓ et m. Résoudre graphiquement :


- 1) m(x) > 0
- $2) \ \ell(x) = m(x)$
- 3) $\ell(x) < m(x)$
- 4) $\ell(x) \geqslant m(x)$

Sésamat

Exercice 6

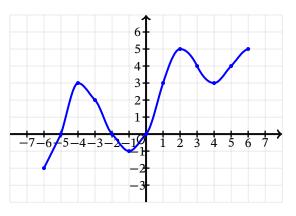
On donne ci-contre la représentation graphique d'une fonction f définie sur [-4; 7].



- 1) Résoudre graphiquement :
 - a) f(x) = 2;
- d) $f(x) \leq 1$;
- b) f(x) = -3;
- e) f(x) < 0.
- c) f(x) < 2;
- f) $f(x) \ge 0$.
- 2) Dresser le tableau de signes de la fonction f sur [-4; 7].

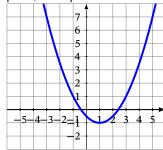
• Sésamath

Exercice 7 -


Dresser les tableaux de signes des 4 fonctions représentées ci-dessous.

Exercice 8

Voici la courbe représentative d'une fonction f, sur son ensemble de définition.


Dresser le tableau de signes de f(x).

 \square J'ai compris, je sais faire.

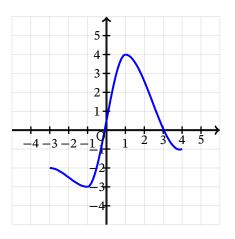
■ MathALÉA

Exercice 9

Déterminer, par lecture graphique mais en le justifiant, si la fonction f représentée est paire, impaire ou ni paire, ni impaire.

☐ J'ai compris, je sais faire.

MathALÉA


Exercice 10

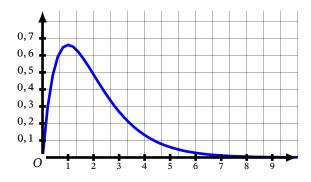
On donne la courbe représentative d'une fonction f définie sur l'intervalle [-3; 4].

Déterminer les extremums de la fonction et préciser en quelles valeurs ils sont atteints.

 \square J'ai compris, je sais faire.

MathALÉA

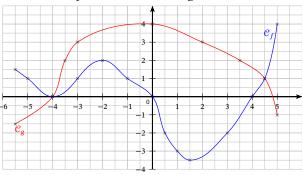
Exercice 11


Le Code de la route interdit toute conduite d'un véhicule lorsque le taux d'alcoolémie est supérieur ou égal à 0,5 g/L.

Le taux d'alcoolémie d'une personne pendant les 10 heures suivant la consommation d'une certaine quantité d'alcool est modélisé par la fonction υ .

- t représente le temps (exprimé en heure) écoulé depuis la consommation d'alcool;
- v(t) représente le taux d'alcoolémie (exprimé en g/L) de cette personne.

On donne la représentation graphique de la fonction v dans un repère.


- À quel instant le taux d'alcoolémie de cette personne est-il maximal? Quelle est alors sa valeur? Arrondir au centième.
- 2) Résoudre graphiquement l'inéquation v(t) > 0.5.
- 3) À l'instant t = 0, il était 12 h. À quelle heure, à la minute près, l'automobiliste peut-il reprendre le volant sans être en infraction ?

3

Pour chercher

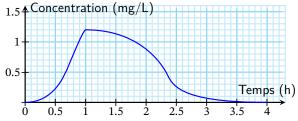
Exercice 12 -

On donne les représentations graphiques \mathcal{C}_f et \mathcal{C}_g d'une fonction f et d'une fonction g.

- 1) Donner l'ensemble de définition des fonctions f et g.
- 2) Déterminer f(-2) et f(4).
- 3) Déterminer les antécédents de 3 par g.
- 4) Déterminer les antécédents de 1 par f.
- 5) Résoudre les équations suivantes :

$$f(x) = 0 \qquad f(x) = -2 \qquad f(x) = g(x)$$

6) Résoudre les inéquations suivantes :

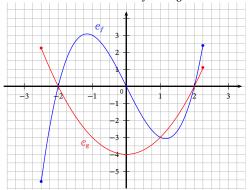

$$f(x) < 0 \qquad \qquad f(x) > 1 \qquad \qquad f(x) > g(x)$$

7) Donner le nombre de solutions de l'équation f(x) = k suivant les valeurs de k.

MathGM

Exercice 13

On a mesuré, en continu pendant quatre heures, la concentration C d'un médicament dans le sang d'un patient. La fonction C est représentée ci-dessous.



- 1) Quelle est la concentration du médicament dans le sang au bout de 2 h?
- 2) Quelle inéquation a pour solution l'intervalle de temps où la concentration du médicament est au plus égale à 1?
- 3) À quels moments la concentration dans le sang est-elle de 0.5 mg/L?
- 4) Ce médicament est jugé efficace quand la concentration dans le sang dépasse 0,8 mg/L. Quelle est donc sa période d'efficacité? (On arrondira grossièrement.)

Sésamath

Exercice 14

On a tracé sur la figure ci-dessous les courbes représentatives de f et de g, définies sur un intervalle I, nommées respectivement \mathcal{C}_f et \mathcal{C}_g .

-Partie A-

- 1) Préciser l'intervalle I.
- 2) Avec la précision permise par le graphique, répondre aux questions suivantes.
 - a) Donner f(-1) puis g(-1).
 - b) Donner les éventuels antécédents de -1 par g.
 - c) Nabolos affirme que f(1,5) > g(1,5). A-t-il raison? Justifier.

-Partie B-

Avec la précision permise par le graphique, résoudre les équations et inéquations suivantes.

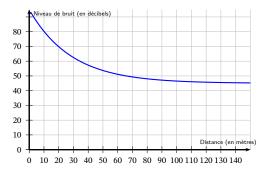
1)
$$f(x) = 0$$

4)
$$g(x) > -3, 5$$

2)
$$g(x) < 0$$

5)
$$f(x) = g(x)$$

3)
$$g(x) = -1$$


6)
$$f(x) > g(x)$$

MathGM

Exercice 15 - Le graphique

Le graphique ci-dessous donne le niveau de bruit (en décibels) d'une tondeuse à gazon en marche, en fonction de la distance (en mètres) entre la tondeuse et l'endroit où s'effectue la mesure.

On note g la fonction qui à une distance d en mètres associe le niveau de bruit en décibels lorsque $0 \leqslant d \leqslant 150$.

En utilisant ce graphique, répondre aux questions suivantes.

- Quel est le niveau de bruit à une distance de 100 mètres de la tondeuse? Traduire ce résultat par une égalité.
- 2) À quelle distance de la tondeuse se trouve-t-on quand le niveau de bruit est égal à 60 décibels? Traduire ce résultat par une égalité.
- 3) Résoudre g(d) < 60. Que peut-on en déduire?
- 4) Quelle inéquation a pour ensemble de solution [0; 20]? Interpréter ce résultat.

D'après DNB

4 Pour s'évaluer

Temps: 20 minutes

Essai 1 : .../10 Essai 2 : .../10

5 Les documents en pdf

