Fonctions - Lectures graphiques (Correction)

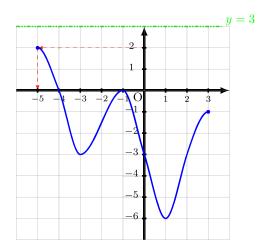
Seconde

Corrigé de l'exercice 1

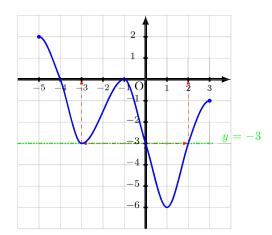
- 1) L'image de -3 est -2, on note f(-3) = -2.
- 2) L'image de 2 est 1, on note f(2) = 1.
- 3) 2 a pour unique antécédent 1, on note f(1) = 2.
- 4) 0 a deux antécédents -1 et 3, on note f(-1) = f(3) = 0.

Corrigé de l'exercice 2

- 1) Le nombre de solutions de l'équation f(x) = 2 est donné par le nombre d'antécédents de 2 par f. Il y en a 1 (tracé rouge en pointillés).
- 2) Résoudre l'équation f(x) = 3 graphiquement revient à lire les abscisses des points d'intersection entre \mathscr{C}_f et la droite (parallèle à l'axe des abscisses tracée en pointillés verts) d'équation y = 3. On en déduit : $S = \emptyset$.



3) Par exemple, l'équation f(x) = -3 possède exactement 3 solutions.



Corrigé de l'exercice 3

- 1) Résoudre graphiquement l'équation g(x) = 2 revient à lire les abscisses des points de la courbe de g dont l'ordonnée est 2.
 - Il y a trois points sur la courbe de g dont l'ordonnée est 2. Les abscisses de ces points sont -3, 1 et 3. Donc $S = \{-3 ; 1; 3\}$.
- 2) Résoudre graphiquement l'équation g(x) = -3 revient à lire les abscisses des points de la courbe de g dont l'ordonnée est -3.
 - Or, il n'y a aucun point sur la courbe de g dont l'ordonnée est -3. Donc $S=\emptyset$.

3) Résoudre graphiquement l'équation g(x) = 4 revient à lire les abscisses des points de la courbe de g dont l'ordonnée est 4.

Il y a deux points sur la courbe de g dont l'ordonnée est 4. Les abscisses de ces points sont -5 et 2. Donc $S = \{-5; 2\}.$

4) Résoudre graphiquement l'équation g(x) = -2 revient à lire les abscisses des points de la courbe de g dont l'ordonnée

Il y a deux points sur la courbe de g dont l'ordonnée est -2. Les abscisses de ces points sont 0 et 5. Donc $S = \{0; 5\}$

Corrigé de l'exercice 4

1) Les solutions de l'inéquation $h(x) \ge 0$ sont les abscisses des points de la courbe de h dont l'ordonnée est supérieure ou égale à 0, c'est-à-dire les abscisses des points situés au-dessus de l'axe des abscisses. Ils sont en rouge sur la courbe.

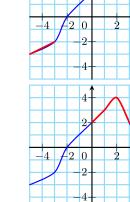
Donc S = [-2; 4].

2) Les solutions de l'inéquation h(x) < -4 sont les abscisses des points de la courbe de h dont l'ordonnée est strictement inférieure à -4.

Or, il n'y a aucun point sur la courbe de h vérifiant cette condition. Donc $S = \emptyset$.

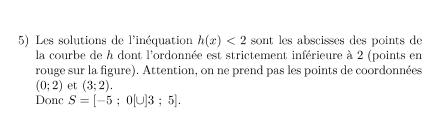
3) Les solutions de l'inéquation h(x) < -2 sont les abscisses des points de la courbe de h dont l'ordonnée est strictement inférieure à -2 (points en rouge sur la figure).

Donc S = [-5; -3[



4) Les solutions de l'inéquation h(x) > 2 sont les abscisses des points de la courbe de h dont l'ordonnée est strictement supérieure à 2 (points en rouge sur la figure).

Donc S =]0 ; 3[.



 $2 \ 0$

2 0

6) Les solutions de l'inéquation $h(x) \leq 2$ sont les abscisses des points de la courbe de h dont l'ordonnée est inférieure ou égale à 2 (points en rouge sur la figure). Cette fois, on prend les points de coordonnées (0; 2) et (3;2).

Donc $S = [-5; 0] \cup [3; 5]$

Corrigé de l'exercice 5

- 1) Les solutions de l'inéquation m(x) > 0 sont les abscisses des points de la courbe de m dont l'ordonnée est strictement supérieure à 0. Donc S = [-5; 0[.
- 2) Les solutions de l'inéquation $\ell(x) = m(x)$ sont les abscisses des points d'intersection des courbes \mathcal{C}_{ℓ} et \mathcal{C}_m . Il n'y a qu'un seul point d'intersection et celui-ci a pour abscisse 2. Donc $S = \{2\}.$

3) Les solutions de l'inéquation $\ell(x) < m(x)$ sont les abscisses des points de la courbe \mathcal{C}_{ℓ} situés strictement au-dessous des points de la courbe \mathcal{C}_m .

Donc S = [-5; 2[.

4) Les solutions de l'inéquation $\ell(x) \ge m(x)$ sont les abscisses des points de la courbe \mathcal{C}_{ℓ} situés au-dessus des points de la courbe \mathcal{C}_m .

Donc S = [2; 5].

Corrigé de l'exercice 6

- 1) a) Les solutions de l'équation f(x) = 2 sont les abscisses des points de la courbe de f dont l'ordonnée est égale à 2. Il y a trois points vérifiant cette condition, ils ont pour abscisse -3, -1 et 3. Donc $S = \{-3; -1; 3\}$.
 - b) Résoudre graphiquement l'équation f(x) = -3 revient à lire les abscisses des points de la courbe de f dont l'ordonnée est -3.

Or, il n'y a aucun point sur la courbe de f dont l'ordonnée est -3.

Donc $S = \emptyset$.

c) Les solutions de l'inéquation f(x) < 2 sont les abscisses des points de la courbe de f dont l'ordonnée est strictement inférieure à 2.

Donc S =]-3; $-1[\cup]3$; 7].

d) Les solutions de l'inéquation $f(x) \leq 2$ sont les abscisses des points de la courbe de f dont l'ordonnée est inférieure ou égale à 2.

Donc $S = [3, 5; 7] \cup \{-2\}.$

e) Les solutions de l'inéquation f(x) < 0 sont les abscisses des points de la courbe de f dont l'ordonnée est strictement inférieure à 0.

Donc S =]4 ; 6[.

f) Les solutions de l'inéquation $f(x) \ge 0$ sont les abscisses des points de la courbe de f dont l'ordonnée est supérieure ou égale à 0.

Donc $S = [-4; 4] \cup [6; 7].$

2) On obtient:

x	-4		4		6		7
f(x)		+	0	_	0	+	

Corrigé de l'exercice 7

1) Tableau de signes de la fonction f:

x	-4		-3		1		4
Signe de $f(x)$		_	0	+	0	+	

2) Tableau de signes de la fonction g:

x	-50		-40		-10		40
Signe de $g(x)$		+	0	_	0	+	

3) Tableau de signes de la fonction h:

x	0		1		7		8
Signe de $h(x)$		-	Ó	+	0	+	

4) Tableau de signes de la fonction u:

x	-0.8		-0,2		1
Signe de $u(x)$		+	O	-	

Corrigé de l'exercice 8

L'ensemble de définition de f est [-6; 6].

Tableau de signes de f(x) sur [-6; 6]:

x	-6		-5		-2		0		6
f(x)		_	0	+	Ö	_	0	+	

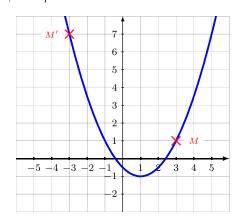
Corrigé de l'exercice 9

On observe que la représentation graphique n'admet pas l'axe des ordonnées comme axe de symétries, ni l'origine comme centre de symétrie.

Prenons par exemple un point M de la courbe, d'abscisse 3, et le point M' aussi de la courbe, mais d'abscisse opposée : -3. Les coordonnées sont M(3;1) et M'(-3;7).

On observe bien que ces deux points ont des ordonnées ni égales, ni opposées.

La fonction représentée est donc ni paire, ni impaire.



Corrigé de l'exercice 10

Le point le plus haut de la courbe a pour coordonnées (1; 4).

On en déduit que le maximum de f est 4. Il est atteint en x=1.

Le point le plus bas de la courbe a pour coordonnées (-1; -3).

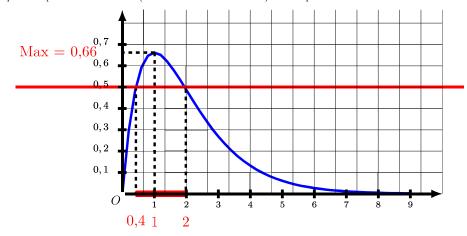
On en déduit que le minimum de f est -3. Il est atteint en x=-1.

Corrigé de l'exercice 11

- 1) Le taux d'alcoolémie maximal est atteint lorsque t=1. Sa valeur est environ 0,66.
- 2) Les solutions de l'inéquation v(t) > 0.5 sont les abscisses des points de la courbe qui se situent strictement en dessus de la droite d'équation y = 0.5.

Cette inéquation a pour ensemble de solution [0,4; 2[.

3) L'automobiliste peut reprendre la route (sans être en infraction) 2 h après la consommation de l'alcool, soit à 14 h.



Corrigé de l'exercice 12

- 1) L'ensemble de définition de la fonction f est l'ensemble des réels x qui ont une image par f. C'est donc l'ensemble des abscisses des points de la courbe de f. On a donc $\mathcal{D}_f = \mathcal{D}_g = [-5, 5; 5]$.
- 2) On a f(-2) = 2 et f(4) = 0.
- 3) Les antécédents de 3 par g sont -3 et 2.

- 4) Les antécédents de 1 par f sont -5, -3, -1 et 4,5.
- 5) Les solutions de l'équation f(x) = 0 sont les abscisses des points de la courbe de f dont l'ordonnée est égale à 0. Autrement dit, ce sont les abscisses des points d'intersection entre la courbe de f et l'axe des abscisses.

Il y a trois points d'intersection, qui ont pour abscisse -4, 0 et 4.

Donc $\mathscr{S}_1 = \{-4 \; ; \; 0 \; ; \; 4\}.$

Les solutions de l'équation f(x) = -2 sont les abscisses des points de la courbe de f dont l'ordonnée est égale à -2. Donc $\mathscr{S}_2 = \{0,5; 3\}$.

Les solutions de l'équation f(x) = g(x) sont les abscisses des points d'intersection des courbes de f et de g.

Il y a deux points d'intersection qui ont pour abscisses -4 et 4,5. Donc $\mathcal{S}_3 = \{-4; 4,5\}$.

6) Les solutions de l'inéquation f(x) < 0 sont les abscisses des points de la courbe de f dont l'ordonnée est strictement inférieure à 0.

Donc $\mathcal{S}_4 =]0$; 4[.

Les solutions de l'inéquation f(x) > 1 sont les abscisses des points de la courbe de f dont l'ordonnée est strictement supérieure à 1.

Donc $\mathcal{S}_5 = [-5,5; -5[\cup] - 3; -1[\cup]4,5; 5].$

Les solutions de l'inéquation f(x) > g(x) sont les abscisses des points de la courbe de f situés strictement au-dessus des points de la courbe de g.

Donc $\mathscr{S}_6 = [-5,5 ; -4[\cup]4,5 ; 5]$

- 7) Si k < -3.5, alors l'équation f(x) = k n'a pas de solution.
 - Si k = -3.5, alors l'équation f(x) = k a une solution.
 - Si -3.5 < k < 0, alors l'équation f(x) = k a deux solutions.
 - Si $0 \le k \le 1.5$, alors l'équation f(x) = k admet quatre solutions.
 - Si 1.5 < k < 2, alors l'équation f(x) = k a trois solutions.
 - Si k = 2, alors l'équation f(x) = k a deux solutions.
 - Si $2 < k \le 4$, alors l'équation f(x) = k a une solution.
 - Si 4 < k, alors l'équation f(x) = k n'a pas de solution.

Corrigé de l'exercice 13

- 1) Au bout de 2h, la concentration du médicament dans le sang est 0,9 mg/L.
- 2) La concentration du médicament est au plus égale à 1 donc l'inéquation est $C(t) \leq 1$.
- 3) La concentration dans le sang est de 0,5 mg/L lorsque $t \simeq 0,7$ et $t \simeq 2,3$.

Or, $0.7 \times 60 = 42$ et $0.3 \times 60 = 18$. Donc, la concentration dans le sang est de 0.5 mg/L au bout de 42 minutes et au bout de 2 heures et 18 minutes.

4) Le médicament est efficace lorsque $t \in]0,8$; 2,1.

Or, $0.8 \times 60 = 56$ et $0.1 \times 60 = 6$. Donc, le médicament est efficace entre 56 minutes et 2 heures et 6 minutes après son injection.

Corrigé de l'exercice 14

-Partie A-

- 1) I est l'ensemble des réels x qui ont une image par f et par g. C'est donc l'ensemble des abscisses des points de chaque courbe. Donc, I = [-2,5; 2,25].
- 2) a) On a f(-1) = 3 et g(-1) = -3.
 - b) Les antécédents de -1 par g sont -1,75 et 1,75.
 - c) $f(1,5) \approx -2.6$ et $g(1,5) \approx -1.75$ donc f(1,5) < g(1,5). Nabolos a donc tort.

-Partie B-

1) Les solutions de l'équation f(x) = 0 sont les abscisses des points de la courbe de f dont l'ordonnée est égale à 0. Autrement dit, ce sont les abscisses des points d'intersection entre la courbe de f et l'axe des abscisses.

Il y a trois points d'intersection, qui ont pour abscisse -2, 0 et 2.

Donc l'ensemble des solutions de l'équation f(x) = 0 est $\mathscr{S} = \{-2; 0; 2\}$.

2) Les solutions de l'inéquation g(x) < 0 sont les abscisses des points de la courbe de g dont l'ordonnée est strictement inférieure à 0.

Donc l'ensemble des solutions de l'inéquation g(x) < 0 est $\mathscr{S} =]-2$; 2[.

- 3) Les solutions de l'équation g(x) = -1 sont les abscisses des points de la courbe de g dont l'ordonnée est égale à -1. Donc l'ensemble des solutions de l'équation g(x) = -1 est $\mathscr{S} = \{-1,75; 1,75\}$.
- 4) Les solutions de l'inéquation g(x) > -3.5 sont les abscisses des points de la courbe de g dont l'ordonnée est strictement supérieure à -3.5.

Donc, l'ensemble des solutions de l'inéquation g(x) > -3.5 est $\mathscr{S} = [-2.5; -0.75] \cup [0.75; 2.25]$.

- 5) Les solutions de l'équation f(x) = g(x) sont les abscisses des points d'intersection des courbes de f et de g. Il y a trois points d'intersection qui ont pour abscisse -2, 1 et 2. Donc l'ensemble des solutions de l'équation f(x) = g(x) est $\mathscr{S} = \{-2; 1; 2\}$.
- 6) Les solutions de l'inéquation f(x) > g(x) sont les abscisses des points de la courbe de f situés strictement au-dessus des points de la courbe de g. Donc l'ensemble des solutions de l'inéquation f(x) > g(x) est $\mathscr{S} =]-2$; $1[\cup]2$; 2,25].

Corrigé de l'exercice 15

1) À une distance de 100 mètres, le niveau de bruit de la tondeuse est 48 db. L'image de 100 par la fonction g est donc 48 et donc g(100) = 48.

strictement supérieure à 35 mètres et inférieure ou égale à 150 mètres.

- 2) Lorsque le niveau de bruit est de 60 db, on se situe à 35 mètres de la tondeuse. 35 est l'antécédent de 60 par la fonction g et donc g(35) = 60.
- 3) Les solutions de l'inéquation g(d) < 60 sont les abscisses des points de la courbe de g dont l'ordonnée est strictement inférieure à 60. Donc l'ensemble des solutions est]35; 150]. Le niveau de bruit de la tondeuse est strictement inférieur à 60 db lorsque la mesure est effectuée à une distance
- 4) L'inéquation dont l'ensemble des solutions est [0; 20], est $g(d) \ge 70$. Le niveau de bruit est supérieur ou égal à 70 db lorsque la mesure s'effectue à une distance inférieure ou égale à 20 mètres.