1 Variations d'une fonction

1.1 Fonction croissante

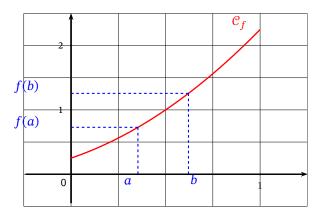
Définition: Fonction croissante

On dit qu'une fonction f est croissante sur un intervalle, si et seulement si, **pour tous** nombres réels a et b appartenant à cet intervalle on a :

Si a < b alors $f(a) \leqslant f(b)$

Si on note \mathcal{C}_f la courbe représentative de la fonction $f,\ \mathcal{C}_f$ « monte ».

On dit qu'une fonction croissante **conserve l'ordre**, c'est-àdire que les nombres et leurs images sont rangés dans le même ordre.



f est croissante sur [0; 1].

1.2 Fonction décroissante

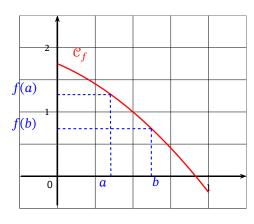
Définition: Fonction décroissante

On dit qu'une fonction f est décroissante sur un intervalle, si et seulement si, **pour tous** nombres réels a et b appartenant à cet intervalle on a :

Si
$$a < b$$
 alors $f(a) \geqslant f(b)$

Si on note \mathcal{C}_f la courbe représentative de la fonction f , \mathcal{C}_f « descend ».

On dit qu'une fonction décroissante **change l'ordre**, c'est-àdire que les nombres et leurs images sont rangés dans un ordre inverse.



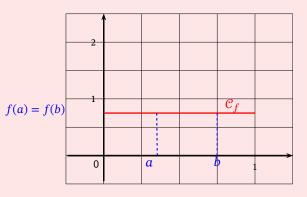
f est décroissante sur [0; 1].

1.3 Fonction constante

Définition: Fonction constante

On dit qu'une fonction f est constante sur un intervalle, si et seulement si, **pour tous** nombres réels a et b appartenant à cet intervalle on a :

Si
$$a < b$$
 alors $f(a) = f(b)$

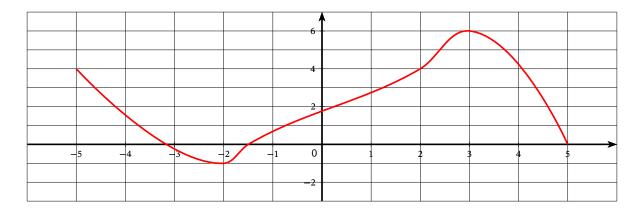


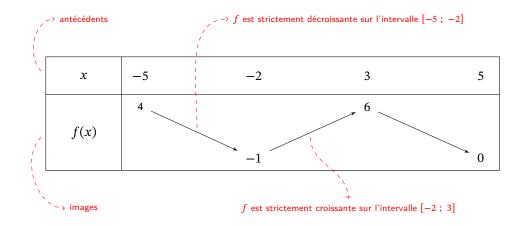
f est constante sur $[0\;;\;1]$

Remarque

- Si l'inégalité a < b implique l'inégalité stricte f(a) < f(b), on dit que la fonction f est **strictement croissante** sur l'intervalle.
- Si l'inégalité a < b implique l'inégalité stricte f(a) > f(b), on dit que la fonction f est **strictement décroissante** sur l'intervalle.
- On dit qu'une fonction f est **monotone** sur un intervalle si elle est soit croissante, soit décroissante sur cet intervalle.
- Un tableau de variation est un tableau qui résume de façon schématique les variations de la fonction.

1.4 Tableau de variations





2 Variations de fonctions de référence

2.1 Les fonctions affines

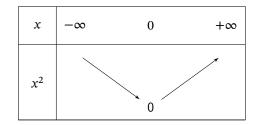
Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p.

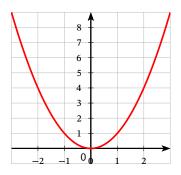
- Si m > 0 alors f est strictement croissante sur \mathbb{R} .
- Si m < 0 alors f est strictement décroissante sur \mathbb{R} .
- Si m=0 alors f est une fonction constante sur \mathbb{R} .

2.2 La fonction carré

Vidéo

- La fonction carré est croissante sur $[0; +\infty[;$
- La fonction carré est décroissante sur sur $]-\infty$; 0].





Méthode : Utiliser la fonction carré pour comparer

On a représenté graphiquement la fonction carré f dans un repère.

1. Comparer graphiquement f(0,5) et f(1,5). Même question avec f(-1,5) et f(-1).

(iii)

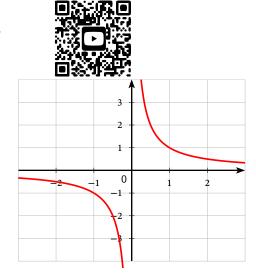
2. Vérifier par calcul le résultat de la question 1.

·	•		

2.3 La fonction inverse

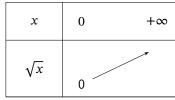
- La fonction inverse est strictement décroissante sur $]-\infty$; 0[.
- La fonction inverse est strictement décroissante sur]0; $+\infty[.*]$

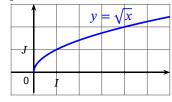
x	-∞	0	+∞
$\frac{1}{x}$			`*



2.4 La fonction racine carrée

La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

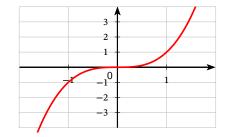




2.5 La fonction cube

La fonction cube est strictement croissante sur \mathbb{R} .

х	-∞	+∞
x^3		



3 Extrema

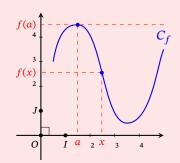
3.1 Maximum

Définition: Maximum

Dire que la fonction f admet un maximum en a sur un intervalle signifie que, pour tout nombre réel x appartenant à cet intervalle on a $f(x) \le f(a)$.

Le maximum de f sur cet intervalle est alors égal à f(a). Il est atteint en x=a.

f(a) est la plus grande valeur de la fonction f sur l'intervalle. C'est l'ordonnée du point le plus haut de la courbe C_f .



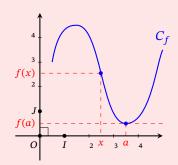
3.2 Minimum

Définition: Minimum

Dire que la fonction f admet un minimum en a sur un intervalle signifie que, pour tout nombre réel x appartenant à cet intervalle on a $f(x) \ge f(a)$.

Le minimum de f sur cet intervalle est alors égal à f(a). Il est atteint en x=a.

f(a) est la plus petite valeur de la fonction f sur l'intervalle. C'est l'ordonnée du point le plus bas de la courbe C_f .



Remarque

- Si le maximum (minimum) existe, celui-ci est unique; cependant, il peut être atteint pour plusieurs valeurs de x.
- Maximum et minimum constituent les **extrema** de la fonction.