Corrigé de l'exercice 1

1)
$$\frac{7}{2} = 3,5$$

2)
$$\frac{11}{4} = 2,75$$

3)
$$\frac{1}{5} = 0,2$$

Corrigé de l'exercice 2

1)
$$0,7 = \frac{7}{10}$$

2)
$$2, 2 = \frac{22}{10} = \frac{11 \times 2}{5 \times 2} = \frac{11}{5}$$

3)
$$4,75 = 4 + 0,75 = \frac{16}{4} + \frac{3}{4} = \frac{19}{4}$$

Corrigé de l'exercice 3

1)
$$\frac{1}{5} \times 40 = 40 \div 5 = 8$$

2)
$$\frac{1}{9} \times 18 = 18 \div 9 = 2$$

3)
$$\frac{3}{7} \times 14 = (14 \div 7) \times 3 = 2 \times 3 = 6$$

Corrigé de l'exercice 4

- 1) Le plus grand multiple de 7 inférieur à 19 est 14. Ainsi, $\frac{19}{7} = \frac{14}{7} + \frac{5}{7} = 2 + \frac{5}{7}$.
- 2) Le plus grand multiple de 7 inférieur à 30 est 28. Ainsi, $\frac{30}{7} = \frac{28}{7} + \frac{2}{7} = 4 + \frac{2}{7}$.
- 3) Le plus grand multiple de 9 inférieur à 49 est 45. Ainsi, $\frac{49}{9} = \frac{45}{9} + \frac{4}{9} = 5 + \frac{4}{9}$.

Corrigé de l'exercice 5

1) Calcul de
$$\frac{3}{5} + \frac{2}{6}$$
:
 $\frac{3}{5} + \frac{2}{6} = \frac{3 \times 6}{5 \times 6} + \frac{2 \times 5}{6 \times 5}$

$$= \frac{18 + 10}{30}$$

$$= \frac{28}{30}$$

$$= \frac{14 \times 2}{15 \times 2}$$

$$= \frac{14}{15}$$
 (On a réduit le plus possible la fraction.)

2) Calcul de
$$2 + \frac{4}{5}$$
:
 $2 + \frac{4}{5} = \frac{2 \times 5}{5} + \frac{4}{5}$

$$= \frac{10 + 4}{5}$$

$$= \frac{14}{5}$$

Corrigé de l'exercice 6

1) Calcul de
$$\frac{10}{9} \times \frac{12}{45}$$
:
$$\frac{10}{9} \times \frac{12}{45} = \frac{10 \times 12}{9 \times 45}$$

$$= \frac{2 \times 5 \times 2 \times 2 \times 3}{3 \times 3 \times 3 \times 3 \times 5}$$

$$= \frac{2 \times 2 \times 2 \times \cancel{\beta} \times \cancel{\beta}}{\cancel{\beta} \times 3 \times 3 \times 3 \times \cancel{\beta}}$$

$$= \frac{8}{27}$$

2) Calcul de
$$\frac{11}{-12} \times \frac{-3}{44}$$
:

$$\frac{11}{-12} \times \frac{-3}{44} = \frac{11 \times (-3)}{-12 \times 44}$$

$$= \frac{11 \times (-3)}{(-2) \times 2 \times 3 \times 2 \times 2 \times 11}$$

$$= \frac{\cancel{\cancel{1}} \times \cancel{\cancel{1}}}{2 \times 2 \times 2 \times 2 \times \cancel{\cancel{1}} \times \cancel{\cancel{1}}}$$

$$= \frac{1}{16}$$

Corrigé de l'exercice 7

1) Calcul de
$$\frac{7}{10} \div \frac{1}{7}$$
:
$$\frac{7}{10} \div \frac{1}{7} = \frac{7}{10} \times 7$$

$$= \frac{7 \times 7}{10 \times 1}$$

$$= \frac{49}{10}$$

2) Calcul de
$$\frac{5}{9} \div \frac{9}{10}$$
:
 $\frac{5}{9} \div \frac{9}{10} = \frac{5}{9} \times \frac{10}{9}$

$$= \frac{5 \times 10}{9 \times 9}$$

$$= \frac{50}{81}$$

Corrigé de l'exercice 8

1) Calcul de
$$\frac{-7}{5} + \frac{8}{2}$$
:
$$\frac{-7}{5} + \frac{8}{2} = \frac{-7 \times 2}{5 \times 2} + \frac{8 \times 5}{2 \times 5}$$

$$= \frac{-14 + 40}{10}$$

$$= \frac{26}{10}$$

$$= \frac{13 \times 2}{5 \times 2}$$

$$= \frac{13}{5} \text{ (On a réduit le plus possible la fraction.)}$$

2) Calcul de $\frac{-9}{6} - \frac{3}{8}$:

$$\frac{-9}{6} - \frac{3}{8} = \frac{-9 \times 4}{6 \times 4} - \frac{3 \times 3}{8 \times 3}$$

$$= \frac{-36 - 9}{24}$$

$$= \frac{-45}{24}$$

$$= -\frac{15 \times 3}{8 \times 3}$$

$$= -\frac{15}{8} \text{ (On a réduit le plus possible la fraction.)}$$

Corrigé de l'exercice 9

1) Calcul de
$$\frac{-22}{-9}$$
: $\frac{-110}{3}$

$$\frac{\frac{-22}{-9}}{\frac{-110}{3}} = \frac{-22}{-9} \times \frac{3}{-110}$$

$$= \frac{-22 \times 3}{-9 \times (-110)}$$

$$= \frac{(-2) \times 11 \times 3}{(-3) \times 3 \times (-2) \times 5 \times 11}$$

$$= -\frac{\cancel{\cancel{1}} \times \cancel{\cancel{1}} \times \cancel{\cancel{1}} \times \cancel{\cancel{3}} \times \cancel{\cancel{3}} \times \cancel{\cancel{5}} \times \cancel{\cancel{1}}}{\cancel{\cancel{1}} \times \cancel{\cancel{1}} \times \cancel{\cancel{3}} \times \cancel{\cancel{3}} \times \cancel{\cancel{5}} \times \cancel{\cancel{1}}}$$

$$= -\frac{1}{15}$$

2) Calcul de
$$\frac{15}{30} \times \frac{-5}{-18}$$
:
 $\frac{15}{30} \times \frac{-5}{-18} = \frac{15 \times (-5)}{30 \times (-18)}$

$$= \frac{3 \times 5 \times (-5)}{2 \times 3 \times 5 \times (-2) \times 3 \times 3}$$

$$= \frac{\cancel{\cancel{5}} \times \cancel{\cancel{5}} \times 5}{2 \times 2 \times \cancel{\cancel{5}} \times 3 \times 3 \times \cancel{\cancel{5}}}$$

$$= \frac{5}{36}$$

3) Calcul de
$$\frac{-2}{-22} \times \frac{-77}{20}$$
:
$$\frac{-2}{-22} \times \frac{-77}{20} = \frac{-2 \times (-77)}{-22 \times 20}$$

$$= \frac{(-2) \times (-7) \times 11}{(-2) \times 11 \times 2 \times 2 \times 5}$$

$$= -\frac{\cancel{\cancel{1}} \times 7 \times \cancel{\cancel{1}}}{\cancel{\cancel{1}} \times 2 \times 2 \times 5 \times \cancel{\cancel{1}}}$$

$$= -\frac{7}{20}$$

Corrigé de l'exercice 10

1) Calcul de
$$A$$
:
$$A = \frac{-3}{56} - \frac{3}{7} \times \frac{-7}{8}$$
On s'occupe des signes moins.
$$= -\frac{3}{56} + \frac{3}{7} \times \frac{7}{8}$$
On effectue la multiplication.
$$= -\frac{3}{56} + \frac{21}{56}$$
On effectue l'addition.
$$= \frac{18}{56}$$
On pense à simplifier le résultat.
$$= \frac{9}{56}$$

2) Calcul de
$$B$$
:
$$B = \frac{3}{4} \div \frac{-5}{9} + \frac{-3}{20}$$
On s'occupe d'abord des signes moins.
$$= -\frac{3}{4} \div \frac{5}{9} - \frac{3}{20}$$
On effectue la division.
$$= -\frac{3}{4} \times \frac{9}{5} - \frac{3}{20}$$
Diviser revient à multiplier par l'inverse
$$= -\frac{27}{20} - \frac{3}{20}$$
On effectue la soustraction.
$$= -\frac{30}{20}$$
On pense à simplifier le résultat.
$$= -\frac{3}{2}$$

Corrigé de l'exercice 11

$$A = \frac{2 + \frac{3}{4}}{2 - \frac{3}{4}}$$

On simplifie le numérateur $2 + \frac{3}{4}$ et le dénominateur $2 - \frac{3}{4}$. 1. Simplification du numérateur :

$$2 + \frac{3}{4} = \frac{11}{4}$$

2. Simplification du dénominateur :

$$2 - \frac{3}{4} = \frac{5}{4}$$

Ainsi:

$$A = \frac{\frac{11}{4}}{\frac{5}{4}}$$

Diviser revient à multiplier par son inverse. En appliquant cette règle, nous obtenons :

$$A = \frac{11 \times 4}{4 \times 5} = \frac{44}{20}$$

On simplifie cette fraction:

$$A = \frac{44 \div 4}{20 \div 4} = \frac{11}{5}$$

Donc : $A = \frac{11}{5}$.

Soit
$$B = \frac{\frac{2}{5} - \frac{3}{4}}{\frac{9}{7} \times \frac{4}{9}}$$
.

$$B = \frac{\frac{2}{5} - \frac{3}{4}}{\frac{9}{7} \times \frac{4}{9}}$$

On simplifie le numérateur $\frac{2}{5} - \frac{3}{4}$ et le dénominateur $\frac{9}{7} \times \frac{4}{9}$. 1. Simplification du numérateur :

$$\frac{2}{5} - \frac{3}{4} = \frac{-7}{20}$$

2. Simplification du dénominateur :

$$\frac{9}{7} \times \frac{4}{9} = \frac{4}{7}$$

Ainsi:

$$B = \frac{\frac{-7}{20}}{\frac{4}{7}}$$

Diviser revient à multiplier par son inverse. En appliquant cette règle, nous obtenons :

$$B = \frac{-7 \times 7}{20 \times 4} = \frac{-49}{80}$$

Donc:
$$B = \frac{-49}{80}$$

Corrigé de l'exercice 12
 $A = \frac{5^2}{2} + \frac{9}{5} \times \frac{12}{81}$
 $= \frac{25}{2} + \frac{12}{45}$
 $= \frac{383}{30}$
 $B = \frac{1}{4} - \left(\frac{2}{-15}\right) \times \frac{7}{8}$
 $= \frac{3}{4} + \frac{7}{60}$
 $= \frac{52}{60}$
 $= \frac{13}{15}$

Corrigé de l'exercice 13

Il s'agit d'un problème additif. Il va être nécessaire de réduire les fractions au même dénominateur pour les additionner, les soustraire ou les comparer.

$$1 - \frac{2}{5} - \frac{1}{4} = \frac{20}{20} - \frac{8}{20} - \frac{5}{20} = \frac{20 - 8 - 5}{20} = \frac{7}{20}$$

soustraire ou les comparer.

Réduisons les fractions de l'énoncé au même dénominateur : $\frac{2}{5} = \frac{8}{20}$ et $\frac{1}{4} = \frac{5}{20}$.

Calculons alors la distance à pied : $1 - \frac{2}{5} - \frac{1}{4} = \frac{20}{20} - \frac{8}{20} - \frac{5}{20} = \frac{20 - 8 - 5}{20} = \frac{7}{20}$ Rémi fait donc $\frac{2}{5}$ à VTT, $\frac{1}{4}$ à ski de fond et $\frac{7}{20}$ à pied.

Avec les mêmes dénominateurs pour pouvoir comparer, Rémi fait donc $\frac{8}{20}$ à VTT, $\frac{5}{20}$ à ski de fond et $\frac{7}{20}$ à pied.

Nous pouvons alors ranger ces fractions dans l'ordre croissant : $\frac{5}{20}$, $\frac{7}{20}$, $\frac{8}{20}$.

Enfin, nous pouvons ranger les fractions de l'énoncé et la fraction calculée dans l'ordre croissant : $\frac{1}{20}$, $\frac{7}{20}$, $\frac{2}{20}$.

fraction calculée dans l'ordre croissant : $\frac{1}{4}$, $\frac{7}{20}$, $\frac{2}{5}$. C'est donc à VTT que Rémi fait la plus grande distance.

Corrigé de l'exercice 14

Il s'agit d'un problème multiplicatif. Prendre une fraction d'une fraction revient à multiplier les deux fractions entre

elles.

$$1 - \frac{7}{16} = \frac{9}{16}$$
 d'eau restant le matin.
 $\frac{4}{9} \times \frac{9}{16} = \frac{1}{4}$ d'eau bue à midi.

Finalement, $\frac{7}{16}$ d'eau bue le matin et $\frac{1}{4}$ d'eau bue à midi.

Réduisons les fractions au même dénominateur : $\frac{7}{16}$ et $\frac{1}{4}$

$$= \frac{4}{16}.$$
Calculons la fraction d'eau qui reste dans la bouteille :
$$1 - \frac{7}{16} - \frac{1}{4} = \frac{16}{16} - \frac{7}{16} - \frac{4}{16} = \frac{16 - 7 - 4}{16} = \frac{5}{16}$$
Conclusion :
$$\frac{5}{16} = \frac{16}{16} - \frac{7}{16} = \frac{16}{16} - \frac{7}{16} = \frac{16}{16} = \frac{5}{16}$$

Conclusion: $\frac{5}{16}$ d'eau restant dans la bouteille. Sachant qu'il y avait 64 cL, on peut calculer: $\frac{5}{16} \times 64 = 20$ cL reste dans la bouteille. Conclusion: 20 cL reste dans la bouteille.

Corrigé de l'exercice 15

 $\frac{2}{3}$ des cookies sont aux noisettes et donc $\frac{1}{3}$ ne sont pas aux noisettes. • $\frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$.

La moitié des cookies aux noisettes représente $\frac{1}{3}$ des cookies.

$$\bullet \ \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}.$$

La quart des autres cookies représente $\frac{1}{12}$ des cookies.

$$\cdot \frac{1}{3} + \frac{1}{12} = \frac{5}{12}$$

Tigane a mangé $\frac{5}{12}$ des cookies, il en reste $\frac{7}{12}$

Corrigé de l'exercice 16

1) Pour justifier l'égalité, on commence par le membre de gauche afin d'obtenir le membre de droite.

$$\frac{3}{4n} + \frac{1}{3n} + \frac{5}{12n} = \frac{3 \times 3}{4n \times 3} + \frac{1 \times 4}{3n \times 4} + \frac{5}{12n}$$
$$= \frac{9}{12n} + \frac{4}{12n} + \frac{5}{12n}$$
$$= \frac{17}{12n}$$

2) On identifie $\frac{3}{2n}$ à $\frac{3}{14}$. On obtient n = 7. Avec n = 7, on a: $\frac{3}{14} = \frac{3}{28} + \frac{1}{21} + \frac{5}{84}$.

Corrigé de l'exercice 17

La formule pour trouver le nombre "milieu" M entre deux nombres a et b est la moyenne des deux nombres :

$$M = \frac{a+b}{2}$$

$$M = \frac{\frac{-2}{11} + \frac{3}{7}}{2}$$

$$= \frac{\frac{-2 \times 7 + 3 \times 11}{77}}{\frac{2}{2}}$$

$$= \frac{\frac{-14 + 33}{77}}{2}$$

$$= \frac{\frac{19}{77}}{2}$$

$$= \frac{\frac{19}{77} \times \frac{1}{2}}{2}$$

$$= \frac{\frac{19}{154}}{154}$$

Le nombre se trouvant au-dessus du point d'interrogation sur la droite graduée est donc : $\frac{19}{154}$.

Corrigé de l'exercice 18

- 1) a) $40 \times \frac{7}{5} = 56$ et $33 \times \frac{2}{3} = 22$. Les dimensions du rectangle obtenu sont : 56 mètres
 - b) L'aire de ce rectangle est donnée par : $56 \times 22 = 1232$ m^2 .
- 2) a) Si on note ℓ et L la largeur et la longueur du rectangle initial, son aire est donnée par : $L \times \ell$. En multipliant par $\frac{7}{5}$ la longueur et par $\frac{2}{3}$ la largeur, les dimensions du nouveau rectangle sont $\frac{7}{5}L$ et $\frac{2}{3}\ell$. Ainsi, l'aire du rectangle obtenu est : $\frac{7}{5}L \times \frac{2}{3}\ell$ $\frac{14}{15}L \times \ell$.
 - b) $\frac{14}{15}$ < 1, donc l'aire du rectangle obtenu est plus petite que celle du rectangle initial.
- 3) a) Le périmètre du rectangle est donné par : $2 \times (7+4) = 2$) On effectue le calcul :
 - b) On a $7 \times \frac{7}{5} = \frac{49}{5}$ et $4 \times \frac{2}{3} = \frac{8}{3}$.

Les dimensions du rectangle obtenu sont : $\frac{49}{5}$ cm, soit 9, 8 cm et $\frac{8}{3}$ cm soit, environ 2,67 cm.

c) On cherche le périmètre du rectangle obtenu :

$$2 \times \left(\frac{49}{5} + \frac{8}{3}\right) = 2 \times \frac{147 + 40}{15} = \frac{374}{15}$$

On cherche la fraction F qui vérifie : $22 \times F = \frac{374}{15}$.

$$F = \frac{374}{15} \div 22 = \frac{17}{15}$$

Le périmètre du rectangle initial a été multiplié par 17

Corrigé de l'exercice 19

1) Pour trouver la part du troisième enfant, on détermine d'abord la quantité de chocolat restante après que le premier et le deuxième se sont servis : $1 - \frac{1}{3} - \frac{1}{4}$.

Le troisième enfant prend $\frac{2}{5}$ de cette quantité restante : $\left(1 - \frac{1}{3} - \frac{1}{4}\right) \times \frac{2}{5}.$

Donc, le calcul correct est le choix B.

$$\left(1 - \frac{1}{3} - \frac{1}{4}\right) \times \frac{2}{5} = \left(\frac{12}{12} - \frac{4}{12} - \frac{3}{12}\right) \times \frac{2}{5}$$
$$= \frac{5}{12} \times \frac{2}{5}$$
$$= \frac{1}{6}$$

Donc, la part du troisième enfant est $\frac{1}{6}$.