Ensemble de nombres - Intervalles (Indices)

Seconde

Indice(s) pour l'exercice 1

Simplifiez les fractions et les racines carrées.

— \mathbb{N} : Ensemble des nombres naturels.

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

— \mathbb{Z} : Ensemble des nombres entiers.

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

— \mathbb{D} : Ensemble des nombres décimaux (une extension de l'ensemble des rationnels, utilisée dans certains contextes pour désigner les nombres pouvant être écrits avec un nombre fini de chiffres après la virgule).

$$\mathbb{D} = \left\{ \frac{p}{10^q} \text{ avec } p \in \mathbb{Z}, q \in \mathbb{N} \right\}$$

Par exemple, 3,056 est un décimal car $3,056 = \frac{3056}{10^3}$.

 $-\mathbb{Q}$: Ensemble des nombres rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \text{ avec } a \in \mathbb{Z}, b \in \mathbb{Z}^*, b \neq 0 \right\}$$

Par exemple $\frac{5}{7}$.

— \mathbb{R} : Ensemble des nombres réels.

 \mathbb{R} = ensemble des nombres que vous connaissez

Indice(s) pour l'exercice 2

Simplifiez les fractions, les racines carrées et les calculs.

— \mathbb{N} : Ensemble des nombres naturels.

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

— \mathbb{Z} : Ensemble des nombres entiers.

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

— \mathbb{D} : Ensemble des nombres décimaux (une extension de l'ensemble des rationnels, utilisée dans certains contextes pour désigner les nombres pouvant être écrits avec un nombre fini de chiffres après la virgule).

$$\mathbb{D} = \left\{ \frac{p}{10^q} \text{ avec } p \in \mathbb{Z}, q \in \mathbb{N} \right\}$$

Par exemple, 3,056 est un décimal car $3,056 = \frac{3056}{10^3}$.

— \mathbb{Q} : Ensemble des nombres rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \text{ avec } a \in \mathbb{Z}, b \in \mathbb{Z}^*, b \neq 0 \right\}$$

Par exemple $\frac{5}{7} \in \mathbb{Q}$.

— \mathbb{R} : Ensemble des nombres réels.

 \mathbb{R} = ensemble des nombres que vous connaissez

Indice(s) pour l'exercice 3

Indice(s) pour l'exercice 4

Par exemple, $x \in]-\infty$; 5] se traduit par l'inégalité $x \leq 5$.

Indice(s) pour l'exercice 5

Par exemple, l'intervalle I de $\mathbb R$ correspondant à l'inéquation $3\leqslant x\leqslant 9$ et la représentation de cet intervalle sur une droite graduée sont :

Indice(s) pour l'exercice 6

Par exemple, une écriture simplifiée de $I=|13\ ;\ 35|\cup [32\ ;\ 55]$ est :

On cherche les réels qui sont dans [13 ; 35] ou bien [32 ; 55] , ou dans les deux.

On regarde donc la partie de l'intervalle qui est coloriée, soit en bleu, soit en rouge, soit en bleu et rouge : I = |13; 55|.

Indice(s) pour l'exercice 7

Trouvez un contre exemple, c'est-à-dire deux irrationnels dont le produit n'est pas irrationnel.

Indice(s) pour l'exercice 8

Choisissez des nombres avec une racine carrée.

Indice(s) pour l'exercice 9

Choisissez des nombres avec une racine carrée.

Indice(s) pour l'exercice 10

Choisissez des nombres avec une racine carrée.

Indice(s) pour l'exercice 11

Trouver un contre-exemple, c'est trouver un nombre qui vérifie les hypothèses mais qui ne vérifie pas la conclusion.

Indice(s) pour l'exercice 12

Indice(s) pour l'exercice 13

Commencez par simplifier le calcul A.

Indice(s) pour l'exercice 14

On développe

$$\left(\sqrt{\frac{a}{c}} + \sqrt{\frac{c}{a}}\right)^{2} = \left(\sqrt{\frac{a}{c}} + \sqrt{\frac{c}{a}}\right)\left(\sqrt{\frac{a}{c}} + \sqrt{\frac{c}{a}}\right)$$
sans oublier que le produit de racines carrées est égal à la racine carrée du produit