

MATHEMATIQUES Suites. Limites de suites : entraînement 3

Exercice 1

Un apiculteur étudie l'évolution de sa population d'abeilles. Au début de son étude, il évalue à 10 000 le nombre

Chaque année, l'apiculteur observe qu'il perd 20 % des abeilles de l'année précédente.

Il achète un nombre identique de nouvelles abeilles chaque année. On notera c ce nombre exprimé en dizaines de milliers.

On note u_0 le nombre d'abeilles, en dizaines de milliers, de cet apiculteur au début de l'étude.

Pour tout entier naturel n non nul, u_n désigne le nombre d'abeilles, en dizaines de milliers, au bout de la n-ième année. Ainsi, on a

 $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 0$, $8u_n + c$.

Partie A

On suppose dans cette partie seulement que c=1.

- 1. Conjecturer la monotonie et la limite de la suite (u_n) .
- 2. Démontrer par récurrence que, pour tout entier naturel n, $u_n = 5 4 \times 0, 8^n$.
- 3. Vérifier les deux conjectures établies à la question 1. en justifiant votre réponse. Interpréter ces deux résultats.

Partie B

L'apiculteur souhaite que le nombre d'abeilles tende vers 100000. On cherche à déterminer la valeur de c qui permet d'atteindre cet objectif. On définit la suite (v_n) par, pour tout entier naturel n, $v_n = u_n - 5c$.

3. Déterminer la valeur de c pour que l'apiculteur atteigne son objectif.

1.	Montrer que la suite ((v_n) est une sui	te géométrique	dont on précise	ra la raison et	le premier	terme.
2.	En déduire une expres	ssion du terme	général de la su	ite (v_n) en fonct	sion de n .		

	•	
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 		• • • • • • • • • • • • • • • • • • • •
 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
 •		• • • • • • • • • • • • • • • • • • • •

www.mathGM.fr 1

Exercice 2

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 & \text{et, pour tout entier naturel } n, \\ u_{n+1} = \left(\frac{n+1}{2n+4}\right) u_n. \end{cases}$$

On définit la suite (v_n) par : pour tout entier naturel $n, v_n = (n+1)u_n$.

1. La feuille de calcul ci-contre présente les valeurs des premiers termes des suites (u_n) et (v_n) , arrondies au cent-millième.

Quelle formule, étirée ensuite vers le bas, peut-on écrire dans la cellule B3 de la feuille de calcul pour obtenir les termes successifs de (u_n) ?

- **2. a.** Conjecturer l'expression de v_n en fonction de n.
 - b. Démontrer cette conjecture.
- 3. Déterminer la limite de la suite (u_n) .

	A	В	С
1	n	u_n	v_n
2	0	1,000 00	1,000 00
3	1	0,25000	0,50000
4	2	0,08333	0,25000
5	3	0,03125	$0,\!12500$
6	4	$0,\!01250$	$0,\!06250$
7	5	$0,\!00521$	$0,\!03125$
8	6	$0,\!00223$	$0,\!01563$
9	7	0,00098	0,00781
10	8	0,00043	0,00391
11	9	0,00020	0,00195

 •	
 	 •

Exercice 3

Un volume constant de 2 200 m³ d'eau est réparti entre deux bassins A et B.

Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la façon suivante :

- au départ, le bassin A contient 800 m³ d'eau et le bassin B contient 1 400 m³ d'eau ;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transféré vers le bassin A;
- $\bullet\,\,$ tous les jours, 10 % du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m³, contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m³, contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc $a_0 = 800$ et $b_0 = 1400$.

- 1. Par quelle relation entre a_n et b_n traduit-on la conservation du volume total d'eau du circuit?
- **2.** Justifier que, pour tout entier naturel n, $a_{n+1} = \frac{3}{4}a_n + 330$.
- 3. L'algorithme ci-dessous permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1 100.

Recopier cet algorithme en complétant les parties manquantes.

$$n \leftarrow 0$$
 $a \leftarrow 800$
Tant que $a < 1100$, faire :
$$\begin{vmatrix} a \leftarrow \dots \\ n \leftarrow \dots \end{vmatrix}$$
Fin Tant que

- **4.** Pour tout entier naturel n, on note $u_n = a_n 1320$.
 - a. Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier terme et la raison.

5. On cherche à savoir si, un jour donné, les deux bassins peuvent avoir, au mètre cube près, le même volume

b. Exprimer u_n en fonction de n.

En déduire que, pour tout entier naturel n, $a_n = 1320 - 520 \times \left(\frac{3}{4}\right)^n$.

d'eau.	
Proposer une méthode pour répondre à ce questionnement.	
	• •

www.mathGM.fr 3

Exercice 4

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2n + 3 \text{ pour tout entier naturel } n. \end{cases}$$

- 1. Étudier la monotonie de la suite (u_n) .
- **2. a.** Démontrer que, pour tout entier naturel $n, u_n > n^2$.
 - **b.** Quelle est la limite de la suite (u_n) ?

3.	${\bf Conjecturer}$	une	expression	$de u_n$,	en	fonction	de n,	puis	démontrer	la	propriété ainsi	conjecturée.	

 ٠.,	 ٠.	٠.	• •	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	 	 ٠.	٠.	•	٠.	٠.		٠.	•	 ٠.	 ٠.	•	 	٠.	٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 • •	• •	
 	 ٠.	٠.		 	 ٠.	٠.		٠.		٠.		 	 	٠.				•			 	 	•	 			 •	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 	• •	 	 	• •	
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 	٠.	•		٠.		٠.	•	 	 ٠.	•	 		٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 	٠.	•		٠.		٠.	•	 	 ٠.	•	 		٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 	٠.	•		٠.		٠.	•	 	 ٠.	•	 		٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 ٠.	٠.	•		٠.		٠.		 ٠.	 ٠.		 	٠.	٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 ٠.		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 ٠.	٠.	•		٠.		٠.		 ٠.	 ٠.		 	٠.	٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 ٠.		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 	٠.	•		٠.		٠.	•	 	 ٠.	•	 		٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.				 	 ٠.	٠.			٠.				 ٠.	 ٠.		 		٠.	 	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 	٠.	•		٠.		٠.	•	 	 ٠.	•	 		٠.		 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 ٠.	٠.	•		٠.		٠.		 ٠.	 ٠.		 	٠.	٠.	 	 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 ٠.		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.				 	 ٠.	٠.			٠.				 ٠.	 ٠.		 		٠.	 	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.				 	 ٠.	٠.			٠.				 ٠.	 ٠.		 		٠.	 	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.				 	 ٠.	٠.			٠.				 ٠.	 ٠.		 		٠.	 	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.		٠.		 	 ٠.	٠.	•		٠.		٠.	•	 	 ٠.		 		٠.		 ٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 ٠.		
 	 ٠.	٠.		 	 ٠.	٠.	٠.	٠.				 	 ٠.	٠.			٠.				 ٠.	 ٠.		 		٠.	 	 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	 		 	 		